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Shear Langmuir vortex: An elementary mode of plasma collective behavior
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Linear evolution of electrostatic perturbations in a cold, unmagnetized, two-component plasnshedth
flow is studied. It is shown that the velocity shear induces, due to the non-normality of the linear dynamics, a
new elementary mode of plasmanperiodiccollective behavior—the “shear Langmuir vortex.” The mode,
characterized by intense energy exchange with the mean flow, is associated with nonoscillatory motion of the
plasma species. In the low-shear limit, the vortex patterns can be described by extremely simple analytic
solutions both for the two-dimensional and three-dimensional cases. It is shown that the two-dimensional
vortices are able to extract the mean flow energy ardnsiently while the three-dimensional structures can
grow asymptotically In moderate and high shear regimes, the conversion of shear Langmuir vortexes into
Langmuir oscillations becomes possible; the latter has nonresonant character and happens abruptly in time.
[S1063-651%98)05706-1

PACS numbg(s): 52.35.Bj, 03.40.Kf, 47.35i

[. INTRODUCTION to the discovery and delineation of novel vortical modes in
plasma shear flows

The study of vortices and vortex motion, with deep roots Before taking a close look on this problem it should be
in the classical works of Helmholtz, Lord Kelvin, Prandtl, stressed that the stability of shear flows remains a serious
and his Gottingen school, is becoming increasingly more relproblem in fluid mechanics, and in plasma physics. Although
evant for a vast number of problems arising in physics, asthe standard stability theorfthe normal modes approach
trophysics, engineering, and mathematics. Being a field ohas been very successful in dealing with a variety of shear
active research in many different disciplin@scluding such  flows, it does run into serious problems in some rather basic
important areas as the theory of coherent structures in fluidnd important cases; the non-self-adjoint character of the
and plasma turbulence, theory of chaotic motion and dygoverning equations4—6] is, often, the source of trouble.
namical systems, theory of line vortices and vortex rings in  The normal mode approach, designed to examine
liquid helium, etc), vortex dynamics is currently recognized asymptotic stability, is perfectly fine for self-adjoint opera-
as a universal and excitingterdisciplinary scientific prob-  tors with mutually orthogonal eigenfunctions. The eigen-
lem[1]. functions associated with non-self-adjoint differential equa-

The vortical and the wave modes of motion are two getions are, however, not mutually orthogonal, and may
neric classes of collective behavior that seem to pervade aditrongly interfere to force an algebraimonexponential
nature. Hydrodynamic and plasma flows are examples dbehavior for early timeg7]. Several recent investigations
physical systems, where both these modes are present, ai-6,8,9 (based on the original ideas due to Lord Kelvin
where they play an important role in the overall dynamics,[10] and Orr[11,17]) have revealed that a superposition of
linear and nonlinear. Vortical motions have been tradition-eventually decaying normal modes may grow initially and
ally, studied in neutral fluids. It was only in the early 1980’s that this transient growth can be significant. Naturally an
that a certain degree of similarity between the vortices innvestigation of this important phenomenon is beyond the
plasmas and neutral fluids was noticed, and somewhat eyurview of the standard stability theory.
ploited[2,3]. A search for vortical motions in plasmas, how- In practical terms, it means that in parallel shear flows,
ever, was not quite vigorous because of their expected asswhere the defining equations may display mathematical pe-
ciation with rather complicated, nonlinear systems.culiarities of the type mentioned above, one should look very
Contemporary progress in the study méutral fluid shear carefully for new modes and also for new phenomena in the
flows however, has revealed a bundle of interesting physica¢stablished modes; it is likely that such aspects of collective
effects associated with the vortex and wéinear dynamics. motions may have been overlooked in the framework of tra-
It is hoped that the same methods can be effectively applieditional analysis. A convenient tool for such a survey is the
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so-callednonmodal approachdue to Kelvin[10]). In this  background mean velocities of the species are equally and
approach, the initial value problem is solved by determinindinearly sheared:

the temporal evolution of thespatial Fourier harmonics .

(SFH’9) of a mode in a moving frame. This approach is Vs={Vs+Ay,0}. (N)
particularly suited for tracing out the time history of nonex- ] .
ponentially evolving disturbances, and has already been apVithout loss of generality, we can tak&>V; . Neglecting
plied to several important hydrodynamid@®,9,13—17, hy- t_he magnetic fle!d produced by 'ghe streaming particles, the
dromagnetic and plasm@l8—26 shear flows. Several Ilne_ar electrost_atlc response of this system is governed by the
unexpected and basic results, associated witHitiear dy- ~ Poisson equation,

namicsof disturbances, have followed in the wake. Ap=—4m(gns+GoNy) @

In particular, the transient algebraically growing solu- ¢ 7(A1N1 7 A2N2),
tions, characterized byortical motion of species, are found anq the linearized fluid equatiofiotion and continuityfor
to be common for a wide range of shear flows: accretionyach one of the species,
shear flowq13], MHD shear flows of the standafd9], and

the electron-positrofi22] plasmas. In a recent wofl26], it DV +AV, =—(qs/mg)dye, (33
was shown that velocity shear induces the excitation of a * Y

completelynew classof nonperiodic, electrostatic perturba- DsVs = —(qs/ms)dye, (3b)
tions with vortical motion of the plasma ions. These pertur-

bations, with their demonstrated ability for effective energy DV, = —(qs/my)d,e, (30

exchange with the mean flow, may play some alominant
role in the linear dynamics of the system.
Another interesting feature of shear-induced vortices is

their remarkable ability to convert into waves for moderateWhere V. is the fluctuating velocity, andDy=d,+ (V.

aLr;cti r;:gche:]/ﬁllu[ezsﬂof w;SSZZ?;'OISt'rSaFe%enf%r:]e;onlégs'c?v\vlg_reg Ay)d, is the convective derivative. Using the readily de-
J y ! P rived commutation relations,

dimensional Couette flow of a neutral fluid but its rather
general character encourages one to look for the existence of [DD,4,]= —~AnD) 14, , (58
similar phenomena in plasma flows.

In the present article we demonstrate the existence of yet [D),A]= —2AnD2_1aXay—A2n(n— 1)D2 252, (5h)
another mode of plasma vortical behavior fogenerictwo-
component, cold, nonrelativistic plasma flow. The complex-and manipulating Eq<3) and(4), we obtain
ity of the vortex temporal evolution is studied for different

Dgns+ Ng( 0xvsx+ (7yvsy+ azvsz) =0, 4

values of the shear rate. The paper is arranged as follows: Ding+ wing = (mMy/my) won, + 2AN 9V, (68
In Sec. Il, we develop the general formalism. We first
derive the linearized electrostatic equations for the flow, and Diny+ w3n,=(my/my) win, + 2AN2aXV2y, (6b)

then implement the “program” for the nonmodal approach
by deriving the ordinary differential equatio®DE’s), de-  wherews=(47q2N/ms)*?is the plasma frequency. Further
scribing the interplay of the conventional plasma featuresnanipulation yields
with the velocity shear. In Sec. Ill, we analyze the system
(assuming zero mutual streaming of species derive a DN (92+ 6§)V5y—o"y(ﬁszer<9ZVSZ)]+A0XHS}=0,
mode of collective motion: a nonperiodic, shear-induced (7a)
plasma vortex.

The dynamics of these solutions, which can be callecPr equivalently(after taking thex derivative and rearranging
“shear Langmuir vortexes'(SLV), is further studied in the terms
concluding Sec. IV. It is shown that the two-dimensional
SLV are able to extract the background flow energy only
transiently However, in three dimensior{8D) the SLV can
feed on the background flow energy evasymptotically
The criterion for the shear instability is derived and ana-
lyzed. It is further shown that for high enough values of the

DgNAV, +Dsdyng+2Ad,Nng} =0, (7b)

Sy
implying that the quantities in curly brackets remain constant
along the flow. The latter expressions, coupled with E5g).
and (5b), help convert Eqs(6a) and(6b) to

shear parameter, SLV soluti_ons acqu_ire noticeable wa_velike ADfmlnﬁDlA{mlwiﬂl— m2w§n2}=0, (8a)
features at large enough times. This phenomenon is de-
iﬁ{;?iiigualltatlvely as conversion of SLV’s into plasma os- AngzanrDzA{mzw%nz— m1w§n1}=0. (8b)
Since My 3N —Myw3n,=47q;N; (N1 +gon,)
Il. GENERAL FORMALISM =—q;N;A ¢, Egs. (88 and (8b) can be rewritten in the

remarkably simple form:
Consider a nonrelativistic, two-component, overall neu-
tral, cold, unmagnetized fluid plasma, characterized by the ADf(qlnl)wLwalA(qlanqznz):O, (99
chargegys, densitieng, and the laboratory-frame velocities

Vs (s is the species indéxLet us further assume that the AD3(02N,) + w5D,A(G1Ng +0oNp) =0. (9b)



57

This pair ofexactpartial differential equations constitutes
the mathematical formulation of the problem.

In order to initiate the standard nonmodal analysis
[14,21], we must transform to the moving frame. This is

achieved by the substitutions’ =x—(V;+Ay)t, y'=y,
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where K(7)= 1+ B2(7)+ %,

P=D;K !(7), and Q

z'=z, t'=t with the corresponding change of operators—p_eie7xc (7).

[AVEVZ_V:L]: D]_:(?tr, D2=¢9t,+AV&Xr, &x=z9x,,
dy=3dy—Atdy, and d,=d,. The Fourier transform
in the new spatial variables, F

= [dky dk, dk, F (ke Ky Ky t)exdi(kex +k,y' +k,2')],
now converts Eqs(2)—(4) to a set of first order, ordinary
differential equation$ODE’s) for the evolution of the spatial
Fourier harmonicgSFH). In terms of dimensionless quanti-
tieS, DlziﬁllNl, Dzziﬁlez, BOEky’/kX’ , ’)’E,\kzr/er y
R=Alck,, r=ckgt’, B(r)=Bo—Rr, Us=V./c, &
=AVic, =q,m,/q;m,, ®=i|q,|e/m,c?, We=w4/cky,
the original equations become

[1+B%(7)+ ¥’ 1®=W;[D;~ D], (10)
Uy +RUy =—, (119
.Uy =~ B(ND, (11b)

d Uy =—y®, (110
(0,+18)Us +RU, == 5, (129
(0,+i8)Up =~ 5B(1) D, (12b)
(9,+ie)Uy == 5y®, (120
d;.D1=U; + ,B(T)Uly-i- YU, (13
(0,+18)Da=U; +B(1)U + YU, (14)

In these variableR is the effective measure of the shear

strength ands3(7) and y denote normalized wave vectors in

the directions transverse to the flow. The integrals of the flow X

(associated with the operatol%), given by Eq.(7), reduce
to the following pair of algebraic relations:

(1+‘)’2)U1y_,3(7')(U1X+ yU1)=RD;+Cy, (158

(1+ 72)U2y_ﬁ(7)(U2x+ 7U2Z)ZRD2+C2e_i8T1
(15b)

whereC,; andC, are some constants.
The dimensionless manifestation of E¢@a) and(6b) are
the following second order ODE'’s:

9°D1+WiD1=WiD,—2RU,,, (163
(9,+ig)?Dy+W3D,=W35D;—2RU,,.  (16b)
Combining Egs(11)—(16), we derive

2RC
K3(7)’
(173

3R%(1+9?)

2
PP+ e

Wi+ P=Wie '*7Q—

These equations constitute a basic set of ODE’s describ-
ing the temporal evolution of SFH in the two-component,
cold plasma shear flow. Evidently in the shearl¢Rs-0,
C,=0) limit the equations encompass the traditional, simple
electrostatic plasma physics: the plasma oscillations(and
der certain well-known conditionghe two stream instabil-
ity. One can easily surmise that additional novelty will result
from the interplay of standard plasma effects and the velocity
shear induced effects. These will certainly inclu@ the
variation of the wave number of each SFH in tiffthie to
the effect of the shearing background on the wave grést
the appearance of algebraic, nonexponentially evolving solu-
tions; and(c) interaction of wavelike and vortexlike solu-
tions with each other.

Mathematically the first effect is contained in the time
dependence of the functidé(r). The appearance of the non-
exponentially evolving, vortex solutiorighe main subject of
the present papgron the other hand, is connected with the
existence of the inhomogeneous terfresms proportional to
C;, andC,) in Eq. (17). Notice that the terms proportional to
C, andC, will vanishif the shear parameté is zero. Thus
any effect emerging from the inhomogeneous terms in Eq.
(17) is naturally induced by the velocity shear.

. “SHEAR LANGMUIR” VORTEXES

The basic properties of the vortical solutions are best de-
lineated in a model in which there is no mutual streaming
(V1=V,=V, £=0) of the species. The initial systethl)—
(17), then, may be elegantly rewritten through one-fluid vari-
ables: the perturbed charge density=q,n;+q,n, and the
current densityl=q;,N,V,+q,N,V,. The result is

j(V=—Rj,—(WI/K)?D, (189
j{V=—(WIK)2gD, (18b)
j=—(WIK)?yD, (189
DW=j,+Bjy+ i, (19

where W=, /ky c, D=io/c|qyN;, j=J/c|gyN;, and
wi=w}+ w5. Note that the translation of the algebraic rela-
tions (15 in the one-fluid variables amounts {€=C;

—-C,l:

(1+72)jy_ﬁ(jx+7jz):RD+C- (20)
It is also straightforward to see that the “energy”
1[ , , W2
EE |Jx|2+|Jy|2+|Jz|2+F|D|2 , (21)

of the SFH varies as
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P oW S
=—R{idy= @ D7/, (22) yzr;_‘,o 2y (253
implying that in the shearlesRE0) limit, the energy of Vo(B)=—(1+ B2+ ~?) %2 (25D
each SFH is a conserved quantity. 5 )
From Egs. (18) and (19 it easily follows that D(? V(B)=— J yn—1+ 3(1+¥) -1 (250
+W2D+2Rj,=0, and taking into account20) for Y " it (1+BP+y)?)
=D/K, we get

where the leading order solutiodl, contains most of the

essential features of the shear-driven Langmuir vortex.
2RC 23 The vortex solution looks a bit simpler in tié,¢) nota-
I3 tion: @ is the angle between thd7) vector and theY axis;
and ¢ measures the angle between theaxis and the pro-
jection of k onto X-Z plane. Shear-induced drift of wave
fvectors, as we have seen above, causes temporal variation of
%y, so that6 varies with time, while¢ remains constant. In

articular, tanp=7y=const and co®(7)=B(DN/K(7).

One can notice that adopting(7) as new independent
variable, introducing new dimensionless parameter
DER cosdp/W=vcos¢, and a new function ¥
= (W/2aC)secé¢ sin §Y, we can rewrite Eq(23) in the form
.of inhomogeneous Hill's differential equatidB0]: «295¥

3R%(1+ 92
N (1+v9)

w2 %

Y@+

Y=—

which could also be derived from E@l7) identifying Y

=P - Q. Further analysis will be dedicated to the solution o
this equation. Note that all physical variables characterizin
th(e)perturbations are readily expressed in term¥(af) and
YD(7).

It should be noted that Eq23) is somewhat analogous
with equations that govern shear-induced evolution of 2
[14] and 3D[17] acoustic perturbations in hydrodynamic
parallel shear flows. It is also similar to the evolution equa 5 o,
tion for the electrostatic ion perturbations in the plasma sheaf [4a”+sin 6]V +1=0. _ _ _
flow [26]. Below we shall exploit this analogy by harnessing The physmal quantities associated with the leading order
the mathematical methods used in R¢tsl], [17], and[26].  SLV solution)), are, now, expressed as

In the shearless limit, Eq23) must and does describe RD= — 2a2C sirt6 (263
elementary plasma oscillations. With nonzero shear, the os- ’
cillations are modified and become dispersive. Besides, and j,=C cos$ ¢[tarfe 6+sin 6 cos 4], (26b)
this is more important, velocity shear causes the appearance
of a new classof solutions driven by the inhomogeneous iy=C cog ¢ sire, (260
term in Eq.(23). General solution of the equation is the sum
of the particular solution and thegeneral solution of the j,=C sin ¢ coS¢[ 6—sin 0 cos 6], (260

corresponding homogeneous equat{@ith C=0). In other

words, Eq.(23) contains the seeds of two different modes of c? . 2

plasma collective behavio(a) Plasma(Langmui) oscilla- == cos'p[sint g+ tarf ¢ x ¢7]. (269
tions, modified by the presence of the velocity she@r—

=0; (b) Aperiodic vortex perturbations&+ 0. Note that in the latter expression, the contribution of the

This classification is strongly justified for flows witR ~ last term (D? term) in the energy expressiof21) is ne-
<1, while forR=1 it becomes quite ill defined. F&t<1, a  glected, because direct calculation shows that it is at lest
particular solution of Eq(23), proportional to the inhomo- times less than the other terms.
geneity parametef, may be readily found. Introducing the ~ The same solutions, exposed in the initial notation, are
auxiliary notation))=W?2Y/2RC, v=R/W, and remembering

that B(7)=By— R7, we can reduce Ed23) to - _ 2RC 1 (279
W2 | 1442+ B2’
9? 3(1+y?)v? 1
(149D J1t92) 1+ +82)
(27
The parameter~A/w, may take low ¢<1) or moder-
ate (v<1) values in different cases of practidalstrophysi- . C
cal or laboratory importance. The latter range, for example, W=1F 77+5?’ (279
may be expected in astrophysical objects characterized by
very high-energy process¢28]. Since the linear dynamics _ Cy B Bm
of SLV for the low and moderate shear rates is so different, ],=— (1+—2)3,; aco Ak 7 32|
we will analyze these cases separately in the next section. Y Vity Y

For low shear, approximate analytic treatment gives a com- (279

plete description of the phenomena: smallness alows us 2 2
to set up a systematic nonsingular perturbation theory. The o ¢ 1ty + y2acot B _
particular solution of Eq.(23) is given by the series 2(1+ %)% | 1+ B2+ 7 Ny

[29,14,17,2% (270
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FIG. 1. Leading order solutions dd(7), Ju(7), Jy(7), and FIG. 2. Leading order solutions dd(7), Jx(7), J,(7), and
&(7)1&, for 2D SLV whenBy=10,R=0.1,W=1, andC=1. &(1)/& for 3D SLV when 8,=10, y=1, R=0.1, W=1, andC
=1.

IV. DISCUSSION
, . increase. Geometrically, these are the perturbations that are,
We are now ready to discuss the main features of th('rhitially almost aligned with theY axis

analytic solutions for shear La_ngmuir vortexes. Later, we (i) 3D perturbations These are considerably more com-
shall also treat moderate and high shear cases and show ﬂb%x and rich. Here, the trigonometric representation of so-

in this regime SLV solutions eyentually acquire VVawel'keIutions is especially convenient for analyzing the SLV fea-
features. This phenomenon, which is rather similar to the ONG s For clarity of exposition, let us consider a SFH with

recently found 27] for the simple example of an unbounded, positive initial valuesk, , k,, andk,. In the course of evo-

cor_npressible plane Cquette flow of a neut_ral fluid, is .de'lution, the angled traverses, monotonically, the ranfé,,
scribed phenomenologically as the conversion of SLV mtow], acquiring the value, = /2 at r=r, = Bo/R. And as

Langmuir oscillations. i .
T—, the asymptotic valué,.= 7 is reached.

From Egs.(26), we may deduce that the behavior of the
. . _ . _ charge density, and of thecomponent of the current density

It is convenient to consider the two-dimensiof@D) and  still remains “transient” just like the 2D perturbations; the
the three-dimensiondBD) cases separately. . extra dimension does not affect them much. However, the
~ (i) 2D perturbations y=0 (¢=0)-these perturbations sjtuation with thex andz components of the current density
lie in 'Fhe XoY plane. Ge.neral SLV solutions reduce to the [normal to the “shear” ) axis] is crucially different; they
following simple expressions: acquire “nontransient,” increasing terngsroportional to the

_ > o1 angle 6), which tend eventually to saturation. This phenom-
D=—-(2RAW)(1+ %) 7, (283 onon s illustrated by Figs.(@-2(d), where D(7)/D(0),

— o1 ix(D1(0), jA7)1j(0), and&(7)/&, functions are plotted
Jx=—CR(+7) 7, (28b) for the same set of parameters as Fig. 1, but withl.
o o1 Using Eq. (26) it is easy to write the ratio of the
Jy=CA+A9 (289 asymptotic and initial value of the SLV energy:

A. Low-shear limit

jy=(C?2)(1+pH L. (28d) e Ttarkd
Plots representing temporal evolution of these solutions & sirfgo+tarte 65’
are presented in Figs(d—1(d), respectively. The figures are
drawn for the following values of the parameteg;=10, Which reduces t@.. /E=sin*¢(m/fp)* when 6,<1. This es-
R=0.1, W=1, C=1. The energy is normalized on its initial timate implies that the asymptotic energy of Skwhich is
value in order to highlight the rate of transient increase. Inequal to zero for 2D perturbationsnay be either less or
particular, the transient increase in energy takes place if inigreater than its initial energy. Naturally, for the quasi-2D
tially k, /k, >0 (Bo>0), and it occurs around the time SLV's, with very small values of, £.<¢& even whend,

7. =B,/R when 8(7) tends to zero, and (£82)2 attains =7 However, for
its minimum value equal to one. Geometrically, it is the very i
moment of time when the wave number veckobecomes b> d=arcta sin bo
perpendicular tdr axis. The transient rate of the energy in- Jmr2— 93 '
crease crucially depends on timitial orientation of the per-

turbation wave vector in space. In fact, we find fromwhere ¢; serves as some threshold value & the
EmaxlEo=(1+ /33) =1/sir? §,, that SLV's with large values asymptotic energy of the SLV becomes greater than its initial
of B, are the only ones that will show a substantial transienenergy. In other words, the SLV’s, for which the initial spa-

(29

(30
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FIG. 3. Temporal evolution o&(7)/&, for leading order 3D FIG. 5. Numerical solutions of th€18)—(19) system for 2D

SLV solution whenBy=2, R=0.02, W=1, andC=1, while y SLV, when B,=10, W=2, while R=0.5 (v, =20). The graphs
=0.1(a) andy=0.2 (b). Dashed horizontal line shows asymptotic display how initially purely vortical solution acquires wavelike fea-
value of the perturbation energy, . tures atr>r7, .

tial orientation is such that conditio(80) is satisfied, be- &./&=4. Figure 3b) displays the entire temporal evolution:
come algebraically unstablethey can extract energy from the initial transient energy increase, leading to the maximum
the mean flow not onlyransiently but also asymptotically ~ (transient value atr=r, , is followed by a decrease towards

The plots, illustrating these interesting properties of 3Dthe asymptotic valu€,.. But now the asymptotic value is a
SLV'’s are presented in Fig. 3 and Fig. 4. In particular, Fig.few times larger than the initial one implying a considerable
3(a) is drawn forW=1, C=1, By=2, R=0.02, andy=0.1.  departure from the 2D picture.

For this sample one can easily check thigt5.7° and ¢, The same tendency is more clearly pronounced in Fig.
=8.0°, so that¢ is below the threshold for asymptotic 4(a) with parametersg,=10,R=0.1, andy=0.3 (W andC
growth; the ratio of the asymptotic to the initial energy are taken the same as abpJe this casep=16.7° again but
comes to bet,, /£,=0.5. Figure 8a) shows explicitly that ¢;=1.9°, so thatp is much larger than the threshold value.
the SLV energy increases transiently, attains its maximunf\s a consequence, the ratio of the asymptotic to the initial
(transient value at 7=7,, and decreases towards its energy,&./&=75, becomes rather large. We see that the
asymptotic valueg,,, which is lessthan the initial value. energy, after initial transient increase, decreases, passes
This behavior of the quasi-2D SLV is reminiscent of the 2Dthrough a broad minimum and begins to increase again tend-
case. ing to its secondasymptoti¢ maximum valueg., .

When v is slightly larger (y=0.2), the situation changes  This complex evolutionary behavior of the energy gives
quite drastically. With¢»=16.7° greater than the threshold way to a monotonic increase for larger valuesyofThis is
¢=8.3°, the asymptotic energy overtakes the initial energyjllustrated in Fig. 4b), for which y=1, 8,=10, R=0.1 (W,

C are the same againin this casep=45.0°, ¢;=2.5°, and

150 : : : , : , \ the ratio of the asymptotic to the initial energy is very large:
&.1£=250. Since the asymptotic value is larger than the
1 maximum transient value, the transient increase is com-
———————————————————————————————————————————————————————————————————————————————————— pletely overwhelmed by the asymptotic increase and the en-
ergy of the SLV increases monotonically tending to saturate
at the valuet,, .

200 250 300 350 400

0
@) Time B. Moderate and high shear limit
20 For moderate and high values of the shear parameter, yet
""""""""""""""""""""""""""""""""""""""""""""""""" another interesting phenomenon appears on the scene; the
2001 . . . . . .
& conversion of SLV into Langmuir oscillatiariBhis phenom-
& ool enon closely resembles the recently found ‘Conversion of
vortex mode into the acoustic wavf27]. Simple and ge-
0 . . , ‘ . neric nature of this phenomena suggests that it should exist
) 0 0010010 S0 B 4%in a wide variety of shear flows of different origin and com-

position. Numerical examination of our specific problem
FIG. 4. Temporal evolution of(7)/&, for leading order 3D  fully supports such an expectation.
SLV solution whenB,=10, R=0.1, W=1, andC=1 while y For moderate and large shear, we must perform a numeri-

=0.3 (a) and y=1 (b). Dashed horizontal line shows asymptotic cal study of our basic Eq$18) and(19). Beginning with a
value of the perturbation energy, . 2D case, we choose the initial conditions to guarantee the
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FIG. 6. Numerical solutions of thél8)—(19) system for 2D FIG. 7. Numerical solutions of th€18)—(19) system for 3D
SLV, whenB,=10, W=1, while R=0.4 (7, =20). SLV, whenB,=10, y=1, W=1, while R=0.5 (7, =20).

excitation of a nonoscillating, pure SLV at=0. This struc-  to extract the mean flow energy not only transiently, but also
ture, however, does not stand the test of timesAtr, , we  asymptotically(see, for comparison, Fig.)4
clearly witness the emergence of the oscillating Langmuir
waves(Figs. 5 and & The initial inhomogeneous solution V. CONCLUSION
(SLV) must change to a mixture of the homogene(ieng-
muir wave and the inhomogeneous in order to satisfy the In this paper, we have derived and investigated a mode of
defining equation at later times. The time evolution, therenonperiodic collective behavior evoked by the presence of
fore, imparts more and more wavelike features to the initiathe kinematic shear in plasma flows. The shear Langmuir
vortical perturbation as if the latter was undergoing modevortexes have rather unique and interesting characteristics,
“conversion.” Obviously, the wavelike features could easily Not the least of which is the ability of the 3D SLV to extract
become dominant at large times. energy from the mean flow even asymptotically. There are
The mode “conversion” process is graddajbrupl for very few known cases in which a simple linear system dis-
smaller(large) values of the ratioo=R/W. The difference Plays an asymptotic algebraic instability. Although it is not
in the two situations becomes apparent on comparing Figs. §asy to pinpoint, at once, the potential applications of SLV's,
and 6. The parameters for Fig. &/=2, C=1, B,= 10, and it is reasonable to expect that these and analogous structures
R=0.5, lead to a small value af=0.25, and we sefn the (investigation of which seems to be similar to this pne
D(7) plot] a gradual process, stretched in time showing howshould lead to significant and measurable effects in various
the vortex acquires wavelike features. Note that other varil@boratory, fusion, geophysical, and astrophysical sheared
ables[j,(7), j,(7), and&(7)/&] also exhibit small but per- pla_sma f|0WS_. One_ can expect tha_t SLV’s, alone, or through
ceptible changes in their structure. their interaction with the Langmqlr waves could senously_
For the plots of Fig. 6, we double the valueoby choos- chan_ge the high frequency beha\_/|or of sheared plasmas. It is
ing W=1. Unlike the previous case, we now observe anpos§|ble, for example, that transiently evolving 2D, gnd es-
“abrupt” appearance of wavelike featurg27]. In this case Pecially the “unstable” 3D SLV, could cause a new kind of
the appearance of wavelike behavior is clearly visible for all@nomalous resistivityThese structures may also play a cred-
the variables. ible role in the subcritical onset of turbulence in plasma
Evolution of SLV's is different in the 3D case. Numerical Shear flows.
calculations carried foW=1, C=1, B,=10, y=1, and
R=0.5 are presented in Fig. 7. The plots show that here also
we find, as the 2D case, the emergence of oscillations from
the vortex. But, the asymptotic result, unlike the 2D case, Andria Rogava is grateful to Nancy Stella 8w for help
contains both the Langmuir oscillations and the SLV. Thisand encouragement. He also wishes to thank International
should be expected, since in the 3D case, the SLV'’s are ablgentre for Theoretical Physics for supporting him in part.
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