
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6
Shear Langmuir vortex: An elementary mode of plasma collective behavior
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Linear evolution of electrostatic perturbations in a cold, unmagnetized, two-component plasma withshear
flow is studied. It is shown that the velocity shear induces, due to the non-normality of the linear dynamics, a
new elementary mode of plasmanonperiodiccollective behavior—the ‘‘shear Langmuir vortex.’’ The mode,
characterized by intense energy exchange with the mean flow, is associated with nonoscillatory motion of the
plasma species. In the low-shear limit, the vortex patterns can be described by extremely simple analytic
solutions both for the two-dimensional and three-dimensional cases. It is shown that the two-dimensional
vortices are able to extract the mean flow energy onlytransiently, while the three-dimensional structures can
grow asymptotically. In moderate and high shear regimes, the conversion of shear Langmuir vortexes into
Langmuir oscillations becomes possible; the latter has nonresonant character and happens abruptly in time.
@S1063-651X~98!05706-7#

PACS number~s!: 52.35.Bj, 03.40.Kf, 47.35.1i
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I. INTRODUCTION

The study of vortices and vortex motion, with deep roo
in the classical works of Helmholtz, Lord Kelvin, Prand
and his Gottingen school, is becoming increasingly more
evant for a vast number of problems arising in physics,
trophysics, engineering, and mathematics. Being a field
active research in many different disciplines~including such
important areas as the theory of coherent structures in fl
and plasma turbulence, theory of chaotic motion and
namical systems, theory of line vortices and vortex rings
liquid helium, etc.!, vortex dynamics is currently recognize
as a universal and excitinginterdisciplinary scientific prob-
lem @1#.

The vortical and the wave modes of motion are two g
neric classes of collective behavior that seem to pervade
nature. Hydrodynamic and plasma flows are examples
physical systems, where both these modes are present
where they play an important role in the overall dynami
linear and nonlinear. Vortical motions have been traditio
ally, studied in neutral fluids. It was only in the early 1980
that a certain degree of similarity between the vortices
plasmas and neutral fluids was noticed, and somewhat
ploited @2,3#. A search for vortical motions in plasmas, how
ever, was not quite vigorous because of their expected a
ciation with rather complicated, nonlinear system
Contemporary progress in the study ofneutral fluid shear
flows, however, has revealed a bundle of interesting phys
effects associated with the vortex and wavelinear dynamics.
It is hoped that the same methods can be effectively app
571063-651X/98/57~6!/7103~8!/$15.00
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to the discovery and delineation of novel vortical modes
plasma shear flows.

Before taking a close look on this problem it should
stressed that the stability of shear flows remains a ser
problem in fluid mechanics, and in plasma physics. Althou
the standard stability theory~the normal modes approach!
has been very successful in dealing with a variety of sh
flows, it does run into serious problems in some rather ba
and important cases; the non-self-adjoint character of
governing equations@4–6# is, often, the source of trouble.

The normal mode approach, designed to exam
asymptotic stability, is perfectly fine for self-adjoint oper
tors with mutually orthogonal eigenfunctions. The eige
functions associated with non-self-adjoint differential equ
tions are, however, not mutually orthogonal, and m
strongly interfere to force an algebraic~nonexponential!
behavior for early times@7#. Several recent investigation
@4–6,8,9# ~based on the original ideas due to Lord Kelv
@10# and Orr@11,12#! have revealed that a superposition
eventually decaying normal modes may grow initially a
that this transient growth can be significant. Naturally a
investigation of this important phenomenon is beyond
purview of the standard stability theory.

In practical terms, it means that in parallel shear flow
where the defining equations may display mathematical
culiarities of the type mentioned above, one should look v
carefully for new modes and also for new phenomena in
established modes; it is likely that such aspects of collec
motions may have been overlooked in the framework of t
ditional analysis. A convenient tool for such a survey is t
7103 © 1998 The American Physical Society
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7104 57ROGAVA, CHAGELISHVILI, AND MAHAJAN
so-callednonmodal approach~due to Kelvin @10#!. In this
approach, the initial value problem is solved by determin
the temporal evolution of thespatial Fourier harmonics
~SFH’s! of a mode in a moving frame. This approach
particularly suited for tracing out the time history of none
ponentially evolving disturbances, and has already been
plied to several important hydrodynamical@8,9,13–17#, hy-
dromagnetic and plasma@18–26# shear flows. Severa
unexpected and basic results, associated with thelinear dy-
namicsof disturbances, have followed in the wake.

In particular, the transient algebraically growing sol
tions, characterized byvortical motion of species, are foun
to be common for a wide range of shear flows: accret
shear flows@13#, MHD shear flows of the standard@19#, and
the electron-positron@22# plasmas. In a recent work@26#, it
was shown that velocity shear induces the excitation o
completelynew classof nonperiodic, electrostatic perturba
tions with vortical motion of the plasma ions. These pert
bations, with their demonstrated ability for effective ener
exchange with the mean flow, may play some or adominant
role in the linear dynamics of the system.

Another interesting feature of shear-induced vortices
their remarkable ability to convert into waves for modera
and high values of the shear. This phenomenon, discov
just recently @27#, was demonstrated for a plane tw
dimensional Couette flow of a neutral fluid but its rath
general character encourages one to look for the existenc
similar phenomena in plasma flows.

In the present article we demonstrate the existence of
another mode of plasma vortical behavior for agenerictwo-
component, cold, nonrelativistic plasma flow. The comple
ity of the vortex temporal evolution is studied for differe
values of the shear rate. The paper is arranged as follow

In Sec. II, we develop the general formalism. We fi
derive the linearized electrostatic equations for the flow, a
then implement the ‘‘program’’ for the nonmodal approa
by deriving the ordinary differential equations~ODE’s!, de-
scribing the interplay of the conventional plasma featu
with the velocity shear. In Sec. III, we analyze the syst
~assuming zero mutual streaming of species! to derive a
mode of collective motion: a nonperiodic, shear-induc
plasma vortex.

The dynamics of these solutions, which can be cal
‘‘shear Langmuir vortexes’’~SLV!, is further studied in the
concluding Sec. IV. It is shown that the two-dimension
SLV are able to extract the background flow energy o
transiently. However, in three dimensions~3D! the SLV can
feed on the background flow energy evenasymptotically.
The criterion for the shear instability is derived and an
lyzed. It is further shown that for high enough values of t
shear parameter, SLV solutions acquire noticeable wave
features at large enough times. This phenomenon is
scribed qualitatively as conversion of SLV’s into plasma o
cillations.

II. GENERAL FORMALISM

Consider a nonrelativistic, two-component, overall ne
tral, cold, unmagnetized fluid plasma, characterized by
chargesqs , densitiesns , and the laboratory-frame velocitie

VW s ~s is the species index!. Let us further assume that th
g
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background mean velocities of the species are equally
linearly sheared:

VW s5$Vs1Ay,0%. ~1!

Without loss of generality, we can takeV2.V1 . Neglecting
the magnetic field produced by the streaming particles,
linear electrostatic response of this system is governed by
Poisson equation,

Dw524p~q1n11q2n2!, ~2!

and the linearized fluid equations~motion and continuity! for
each one of the species,

DsVsx
1AVsy

52~qs /ms!]xw, ~3a!

DsVsy
52~qs /ms!]yw, ~3b!

DsVsz
52~qs /ms!]zw, ~3c!

Dsns1Ns~]xVsx
1]yVsy

1]zVsz
!50, ~4!

where Vs is the fluctuating velocity, andDs[] t1(Vs
1Ay)]x is the convective derivative. Using the readily d
rived commutation relations,

@Ds
n ,]y#52AnDs

n21]x , ~5a!

@Ds
n ,D#522AnDs

n21]x]y2A2n~n21!Ds
n22]x

2, ~5b!

and manipulating Eqs.~3! and ~4!, we obtain

D1
2n11v1

2n15~m2 /m1!v2
2n212AN1]xV1y

, ~6a!

D2
2n21v2

2n25~m1 /m2!v1
2n112AN2]xV2y

, ~6b!

wherevs[(4pqs
2Ns /ms)

1/2 is the plasma frequency. Furthe
manipulation yields

Ds$Ns@~]x
21]z

2!Vsy
2]y~]xVsx

1]zVsz
!#1A]xns%50,

~7a!

or equivalently~after taking thex derivative and rearranging
terms!

Ds$NsDVsy
1Ds]yns12A]xns%50, ~7b!

implying that the quantities in curly brackets remain const
along the flow. The latter expressions, coupled with Eqs.~5a!
and ~5b!, help convert Eqs.~6a! and ~6b! to

DD1
3m1n11D1D$m1v1

2n12m2v2
2n2%50, ~8a!

DD2
3m2n21D2D$m2v2

2n22m1v1
2n1%50. ~8b!

Since m1v1
2n12m2v2

2n254pq1N1(q1n11q2n2)
52q1N1Dw, Eqs. ~8a! and ~8b! can be rewritten in the
remarkably simple form:

DD1
3~q1n1!1v1

2D1D~q1n11q2n2!50, ~9a!

DD2
3~q2n2!1v2

2D2D~q1n11q2n2!50. ~9b!
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57 7105SHEAR LANGMUIR VORTEX: AN ELEMENTARY MODE . . .
This pair ofexactpartial differential equations constitute
the mathematical formulation of the problem.

In order to initiate the standard nonmodal analy
@14,21#, we must transform to the moving frame. This
achieved by the substitutionsx85x2(V11Ay)t, y85y,
z85z, t85t with the corresponding change of operato
@DV[V22V1#: D15] t8 , D25] t81DV]x8 , ]x5]x8 ,
]y5]y82At]x8 , and ]z5]z8 . The Fourier transform
in the new spatial variables, F
5*dkx8dky8dkz8F̂(kx8 ,ky8 ,kz8 ,t)exp@i(kx8x81ky8y81kz8z8)#,
now converts Eqs.~2!–~4! to a set of first order, ordinary
differential equations~ODE’s! for the evolution of the spatia
Fourier harmonics~SFH!. In terms of dimensionless quant
ties, D1[ i n̂1 /N1 , D2[ i n̂2 /N2 , b0[ky8 /kx8 , g[kz8 /kx8 ,
R[A/ckx8 , t[ckx8t8, b(t)[b02Rt, UW s[V̂s /c, «
[DV/c, d[q2m1 /q1m2 , F[ i uq1uŵ/m1c2, Ws[vs /ckx8 ,
the original equations become

@11b2~t!1g2#F5W1
2@D12D2#, ~10!

]tU1x
1RU1y

52F, ~11a!

]tU1y
52b~t!F, ~11b!

]tU1z
52gF, ~11c!

~]t1 i«!U2x
1RU2y

52dF, ~12a!

~]t1 i«!U2y
52db~t!F, ~12b!

~]t1 i«!U2z
52dgF, ~12c!

]tD15U1x
1b~t!U1y

1gU1z
, ~13!

~]t1 i«!D25U2x
1b~t!U2y

1gU2z
. ~14!

In these variables,R is the effective measure of the she
strength andb~t! andg denote normalized wave vectors
the directions transverse to the flow. The integrals of the fl
~associated with the operatorsDs!, given by Eq.~7!, reduce
to the following pair of algebraic relations:

~11g2!U1y
2b~t!~U1x

1gU1z
!5RD11C1 , ~15a!

~11g2!U2y2b~t!~U2x1gU2z!5RD21C2e2 i«t,
~15b!

whereC1 andC2 are some constants.
The dimensionless manifestation of Eqs.~6a! and~6b! are

the following second order ODE’s:

]t
2D11W1

2D15W1
2D222RU1y , ~16a!

~]t1 i«!2D21W2
2D25W2

2D122RU2y . ~16b!

Combining Eqs.~11!–~16!, we derive

]t
2P1FW1

21
3R2~11g2!

K4~t! GP5W1
2e2 i«tQ2

2RC1

K3~t!
,

~17a!
s

w

]t
2Q1FW2

21
3R2~11g2!

K4~t! GQ5W2
2ei«tP2

2RC2

K3~t!
,

~17b!

where K(t)[A11b2(t)1g2, P[D1K21(t), and Q
[D2ei«tK21(t).

These equations constitute a basic set of ODE’s desc
ing the temporal evolution of SFH in the two-compone
cold plasma shear flow. Evidently in the shearless~R50,
Cs50! limit the equations encompass the traditional, sim
electrostatic plasma physics: the plasma oscillations and~un-
der certain well-known conditions! the two stream instabil-
ity. One can easily surmise that additional novelty will res
from the interplay of standard plasma effects and the velo
shear induced effects. These will certainly include~a! the
variation of the wave number of each SFH in time~due to
the effect of the shearing background on the wave crest!; ~b!
the appearance of algebraic, nonexponentially evolving s
tions; and~c! interaction of wavelike and vortexlike solu
tions with each other.

Mathematically the first effect is contained in the tim
dependence of the functionK~t!. The appearance of the non
exponentially evolving, vortex solutions~the main subject of
the present paper!, on the other hand, is connected with th
existence of the inhomogeneous terms~terms proportional to
C1 andC2! in Eq. ~17!. Notice that the terms proportional t
C1 andC2 will vanishif the shear parameterR is zero. Thus
any effect emerging from the inhomogeneous terms in
~17! is naturally induced by the velocity shear.

III. ‘‘SHEAR LANGMUIR’’ VORTEXES

The basic properties of the vortical solutions are best
lineated in a model in which there is no mutual stream
(V15V25V, «50) of the species. The initial system~11!–
~17!, then, may be elegantly rewritten through one-fluid va
ables: the perturbed charge density%[q1n11q2n2 and the
current densityJ[q1N1V11q2N2V2 . The result is

j x
~1!52R jy2~W/K!2D, ~18a!

j y
~1!52~W/K!2bD, ~18b!

j z
~1!52~W/K!2gD, ~18c!

D ~1!5 j x1b j y1g j z , ~19!

where W[vp /kx1
c, D[ i %̂/cuq1uN1 , j[ Ĵ/cuq1uN1 , and

vp
2[v1

21v2
2. Note that the translation of the algebraic rel

tions ~15! in the one-fluid variables amounts to@C[C1
2C2#:

~11g2! j y2b~ j x1g j z!5RD1C. ~20!

It is also straightforward to see that the ‘‘energy’’

E[
1

2 F u j xu21u j yu21u j zu21
W2

K2 uDu2G , ~21!

of the SFH varies as
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7106 57ROGAVA, CHAGELISHVILI, AND MAHAJAN
E~1!52RS j x j y2
W2b

K4 D2D , ~22!

implying that in the shearless (R50) limit, the energy of
each SFH is a conserved quantity.

From Eqs. ~18! and ~19! it easily follows that D (2)

1W2D12R jy50, and taking into account~20! for Y
[D/K, we get

Y~2!1FW21
3R2~11g2!

K4 GY52
2RC
K3 , ~23!

which could also be derived from Eq.~17! identifying Y
[P2Q. Further analysis will be dedicated to the solution
this equation. Note that all physical variables characteriz
the perturbations are readily expressed in terms ofY(t) and
Y(1)(t).

It should be noted that Eq.~23! is somewhat analogou
with equations that govern shear-induced evolution of
@14# and 3D @17# acoustic perturbations in hydrodynam
parallel shear flows. It is also similar to the evolution equ
tion for the electrostatic ion perturbations in the plasma sh
flow @26#. Below we shall exploit this analogy by harnessi
the mathematical methods used in Refs.@14#, @17#, and@26#.

In the shearless limit, Eq.~23! must and does describ
elementary plasma oscillations. With nonzero shear, the
cillations are modified and become dispersive. Besides,
this is more important, velocity shear causes the appear
of a new classof solutions driven by the inhomogeneou
term in Eq.~23!. General solution of the equation is the su
of the particular solution and thegeneral solution of the
corresponding homogeneous equation~with C50!. In other
words, Eq.~23! contains the seeds of two different modes
plasma collective behavior:~a! Plasma~Langmuir! oscilla-
tions, modified by the presence of the velocity shear—C
50; ~b! Aperiodic vortex perturbations—CÞ0.

This classification is strongly justified for flows withR
!1, while for R.1 it becomes quite ill defined. ForR!1, a
particular solution of Eq.~23!, proportional to the inhomo-
geneity parameterC, may be readily found. Introducing th
auxiliary notationY[W2Y/2RC, n[R/W, and remembering
that b(t)[b02Rt, we can reduce Eq.~23! to

n2
]2Y
]b2 1F11

3~11g2!n2

K4 GY1
1

K3 50. ~24!

The parametern;A/vp may take low (n!1) or moder-
ate (n<1) values in different cases of practical~astrophysi-
cal or laboratory! importance. The latter range, for examp
may be expected in astrophysical objects characterized
very high-energy processes@28#. Since the linear dynamic
of SLV for the low and moderate shear rates is so differe
we will analyze these cases separately in the next sec
For low shear, approximate analytic treatment gives a co
plete description of the phenomena: smallness ofn allows us
to set up a systematic nonsingular perturbation theory.
particular solution of Eq.~23! is given by the series
@29,14,17,26#
f
g

-
ar

s-
nd
ce

f

,
by

t,
n.
-

e

Y5 (
n50

`

n2nYn , ~25a!

Y0~b!52~11b21g2!23/2, ~25b!

Yn~b!52F]2Yn21

]b2 1
3~11g2!Yn21

~11b21g2!2 G , ~25c!

where the leading order solutionY0 contains most of the
essential features of the shear-driven Langmuir vortex.

The vortex solution looks a bit simpler in the~u,f! nota-
tion: u is the angle between thek~t! vector and theY axis;
and f measures the angle between theX axis and the pro-
jection of k onto X-Z plane. Shear-induced drift of wav
vectors, as we have seen above, causes temporal variati
ky , so thatu varies with time, whilef remains constant. In
particular, tanf5g5const and cosu(t)5b(t)/K(t).
One can notice that adoptingu(t) as new independen
variable, introducing new dimensionless parametera
[R cosf/W5n cosf, and a new function C
[(W/2aC)sec2f sinuY, we can rewrite Eq.~23! in the form
of inhomogeneous Hill’s differential equation@30#: a2]u

2C
1@4a21sin24u#C1150.

The physical quantities associated with the leading or
SLV solutionY0 are, now, expressed as

RD522a2C sin2u, ~26a!

j x5C cos3 f@ tan2f u1sin u cosu#, ~26b!

j y5C cos2f sin2u, ~26c!

j z5C sin f cos2f@u2sin u cosu#, ~26d!

E.
C2

2
cos4f@sin2u1tan2f3u2#. ~26e!

Note that in the latter expression, the contribution of t
last term ~D2 term! in the energy expression~21! is ne-
glected, because direct calculation shows that it is at leasa2

times less than the other terms.
The same solutions, exposed in the initial notation, ar

D52S 2RC
W2 D 1

11g21b2 , ~27a!

j x52S C
~11g2!3/2D Fg2acotS b

A11g2D 1
bA11g2

11g21b2G ,

~27b!

j y5
C

11g21b2 , ~27c!

j z52S Cg
~11g2!3/2D FacotS b

A11g2D 2
bA11g2

11g21b2G ,

~27d!

E.
C2

2~11g2!2 F 11g2

11b21g2 1g2acot2S b

A11g2D G .

~27e!
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IV. DISCUSSION

We are now ready to discuss the main features of
analytic solutions for shear Langmuir vortexes. Later,
shall also treat moderate and high shear cases and show
in this regime SLV solutions eventually acquire waveli
features. This phenomenon, which is rather similar to the
recently found@27# for the simple example of an unbounde
compressible plane Couette flow of a neutral fluid, is d
scribed phenomenologically as the conversion of SLV i
Langmuir oscillations.

A. Low-shear limit

It is convenient to consider the two-dimensional~2D! and
the three-dimensional~3D! cases separately.

~i! 2D perturbations, g50 (f50) –these perturbation
lie in the XOY plane. General SLV solutions reduce to t
following simple expressions:

D52~2RC/W2!~11b2!21, ~28a!

j x52Cb~11b2!21, ~28b!

j y5C~11b2!21, ~28c!

j y5~C2/2!~11b2!21. ~28d!

Plots representing temporal evolution of these soluti
are presented in Figs. 1~a!–1~d!, respectively. The figures ar
drawn for the following values of the parameters:b0510,
R50.1, W51, C51. The energy is normalized on its initia
value in order to highlight the rate of transient increase.
particular, the transient increase in energy takes place if
tially ky1

/kx1
.0 (b0.0), and it occurs around the tim

t* [b0 /R when b~t! tends to zero, and (11b2)1/2 attains
its minimum value equal to one. Geometrically, it is the ve
moment of time when the wave number vectork becomes
perpendicular toY axis. The transient rate of the energy i
crease crucially depends on theinitial orientation of the per-
turbation wave vector in space. In fact, we find fro
Emax/E05(11b0

2)51/sin2 u0, that SLV’s with large values
of b0 are the only ones that will show a substantial transi

FIG. 1. Leading order solutions ofD(t), Jx(t), Jy(t), and
E(t)/E0 for 2D SLV whenb0510, R50.1, W51, andC51.
e
e
that

e

-
o

s

n
i-

t

increase. Geometrically, these are the perturbations that
initially, almost aligned with theY axis.

~ii ! 3D perturbations: These are considerably more com
plex and rich. Here, the trigonometric representation of
lutions is especially convenient for analyzing the SLV fe
tures. For clarity of exposition, let us consider a SFH w
positive initial valueskx , ky , andkz . In the course of evo-
lution, the angleu traverses, monotonically, the range@u0 ,
p#, acquiring the valueut

*
5p/2 at t5t* [b0 /R. And as

t→`, the asymptotic valueu`5p is reached.
From Eqs.~26!, we may deduce that the behavior of th

charge density, and of they component of the current densit
still remains ‘‘transient’’ just like the 2D perturbations; th
extra dimension does not affect them much. However,
situation with thex andz components of the current densi
@normal to the ‘‘shear’’ (Y) axis# is crucially different; they
acquire ‘‘nontransient,’’ increasing terms~proportional to the
angleu!, which tend eventually to saturation. This pheno
enon is illustrated by Figs. 2~a!–2~d!, where D(t)/D(0),
j x(t)/ j x(0), j z(t)/ j z(0), andE(t)/E0 functions are plotted
for the same set of parameters as Fig. 1, but withg51.

Using Eq. ~26! it is easy to write the ratio of the
asymptotic and initial value of the SLV energy:

E`

E0
5

p2tan2f

sin2f01tan2f u0
2 , ~29!

which reduces toE` /E0.sin2f(p/u0)
2 whenu0!1. This es-

timate implies that the asymptotic energy of SLV~which is
equal to zero for 2D perturbations! may be either less o
greater than its initial energy. Naturally, for the quasi-2
SLV’s, with very small values off, E`,E0 even whenu0
!p. However, for

f.f t[arctanS sin u0

Ap22u0
2D , ~30!

where f t serves as some threshold value off, the
asymptotic energy of the SLV becomes greater than its in
energy. In other words, the SLV’s, for which the initial sp

FIG. 2. Leading order solutions ofD(t), Jx(t), Jz(t), and
E(t)/E0 for 3D SLV when b0510, g51, R50.1, W51, andC
51.
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tial orientation is such that condition~30! is satisfied, be-
come algebraically unstable: they can extract energy from
the mean flow not onlytransiently but also asymptotically.

The plots, illustrating these interesting properties of
SLV’s are presented in Fig. 3 and Fig. 4. In particular, F
3~a! is drawn forW51, C51, b052, R50.02, andg50.1.
For this sample one can easily check thatf.5.7° andf t
.8.0°, so thatf is below the threshold for asymptoti
growth; the ratio of the asymptotic to the initial energ
comes to beE` /E0.0.5. Figure 3~a! shows explicitly that
the SLV energy increases transiently, attains its maxim
~transient! value at t5t* , and decreases towards i
asymptotic valueE` , which is less than the initial value.
This behavior of the quasi-2D SLV is reminiscent of the 2
case.

Wheng is slightly larger (g50.2), the situation change
quite drastically. Withf.16.7° greater than the thresho
f t.8.3°, the asymptotic energy overtakes the initial ener

FIG. 3. Temporal evolution ofE(t)/E0 for leading order 3D
SLV solution whenb052, R50.02, W51, and C51, while g
50.1 ~a! andg50.2 ~b!. Dashed horizontal line shows asymptot
value of the perturbation energyE` .

FIG. 4. Temporal evolution ofE(t)/E0 for leading order 3D
SLV solution whenb0510, R50.1, W51, and C51 while g
50.3 ~a! and g51 ~b!. Dashed horizontal line shows asymptot
value of the perturbation energyE` .
.

m

,

E` /E0.4. Figure 3~b! displays the entire temporal evolution
the initial transient energy increase, leading to the maxim
~transient! value att5t* , is followed by a decrease toward
the asymptotic valueE` . But now the asymptotic value is
few times larger than the initial one implying a considerab
departure from the 2D picture.

The same tendency is more clearly pronounced in F
4~a! with parameters:b0510, R50.1, andg50.3 ~W andC
are taken the same as above!. In this casef.16.7° again but
f t.1.9°, so thatf is much larger than the threshold valu
As a consequence, the ratio of the asymptotic to the ini
energy,E` /E0.75, becomes rather large. We see that
energy, after initial transient increase, decreases, pa
through a broad minimum and begins to increase again te
ing to its second~asymptotic! maximum valueE` .

This complex evolutionary behavior of the energy giv
way to a monotonic increase for larger values ofg. This is
illustrated in Fig. 4~b!, for which g51, b0510, R50.1 ~W,
C are the same again!. In this casef.45.0°, f t.2.5°, and
the ratio of the asymptotic to the initial energy is very larg
E` /E0.250. Since the asymptotic value is larger than t
maximum transient value, the transient increase is co
pletely overwhelmed by the asymptotic increase and the
ergy of the SLV increases monotonically tending to satur
at the valueE` .

B. Moderate and high shear limit

For moderate and high values of the shear parameter
another interesting phenomenon appears on the scene
conversion of SLV into Langmuir oscillations. This phenom-
enon closely resembles the recently found ‘Conversion
vortex mode into the acoustic wave’@27#. Simple and ge-
neric nature of this phenomena suggests that it should e
in a wide variety of shear flows of different origin and com
position. Numerical examination of our specific proble
fully supports such an expectation.

For moderate and large shear, we must perform a num
cal study of our basic Eqs.~18! and ~19!. Beginning with a
2D case, we choose the initial conditions to guarantee

FIG. 5. Numerical solutions of the~18!–~19! system for 2D
SLV, when b0510, W52, while R50.5 (t* 520). The graphs
display how initially purely vortical solution acquires wavelike fe
tures att.t* .
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excitation of a nonoscillating, pure SLV att50. This struc-
ture, however, does not stand the test of time. Att5t* , we
clearly witness the emergence of the oscillating Langm
waves~Figs. 5 and 6!. The initial inhomogeneous solutio
~SLV! must change to a mixture of the homogeneous~Lang-
muir wave! and the inhomogeneous in order to satisfy t
defining equation at later times. The time evolution, the
fore, imparts more and more wavelike features to the ini
vortical perturbation as if the latter was undergoing mo
‘‘conversion.’’ Obviously, the wavelike features could eas
become dominant at large times.

The mode ‘‘conversion’’ process is gradual~abrupt! for
smaller~larger! values of the ration[R/W. The difference
in the two situations becomes apparent on comparing Fig
and 6. The parameters for Fig. 5,W52, C51, b0510, and
R50.5, lead to a small value ofn50.25, and we see@in the
D(t) plot# a gradual process, stretched in time showing h
the vortex acquires wavelike features. Note that other v
ables@j x(t), j y(t), andE(t)/E0# also exhibit small but per-
ceptible changes in their structure.

For the plots of Fig. 6, we double the value ofn by choos-
ing W51. Unlike the previous case, we now observe
‘‘abrupt’’ appearance of wavelike features@27#. In this case
the appearance of wavelike behavior is clearly visible for
the variables.

Evolution of SLV’s is different in the 3D case. Numeric
calculations carried forW51, C51, b0510, g51, and
R50.5 are presented in Fig. 7. The plots show that here
we find, as the 2D case, the emergence of oscillations f
the vortex. But, the asymptotic result, unlike the 2D ca
contains both the Langmuir oscillations and the SLV. T
should be expected, since in the 3D case, the SLV’s are

FIG. 6. Numerical solutions of the~18!–~19! system for 2D
SLV, whenb0510, W51, while R50.4 (t* 520).
,
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to extract the mean flow energy not only transiently, but a
asymptotically~see, for comparison, Fig. 4!.

V. CONCLUSION

In this paper, we have derived and investigated a mod
nonperiodic collective behavior evoked by the presence
the kinematic shear in plasma flows. The shear Langm
vortexes have rather unique and interesting characteris
not the least of which is the ability of the 3D SLV to extra
energy from the mean flow even asymptotically. There
very few known cases in which a simple linear system d
plays an asymptotic algebraic instability. Although it is n
easy to pinpoint, at once, the potential applications of SLV
it is reasonable to expect that these and analogous struc
~investigation of which seems to be similar to this on!
should lead to significant and measurable effects in vari
laboratory, fusion, geophysical, and astrophysical shea
plasma flows. One can expect that SLV’s, alone, or throu
their interaction with the Langmuir waves could serious
change the high frequency behavior of sheared plasmas.
possible, for example, that transiently evolving 2D, and
pecially the ‘‘unstable’’ 3D SLV, could cause a new kind o
anomalous resistivity. These structures may also play a cre
ible role in the subcritical onset of turbulence in plasm
shear flows.
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